Direct numerical simulation of rising bubble interaction with free surface using level contour reconstruction method

نویسنده

  • Seungwon Shin
چکیده

Bubble rising phenomenon is widely found in many engineering applications including stream generators in power plants. Many experimental and numerical researches have been performed to predict the dynamic behavior of the bubble rising process. Most simulations so far have focused on evolution behavior of the rising bubble itself. Rising bubbles could penetrate through the top free surface which makes the problem much more complicated in addition to the curvature effect on the interface. With top surface, satellite droplets may be generated near breakup region and entrained to rising velocity field. In this paper, the effect of top free surface on rising bubble has been numerically investigated. High-order tetra-marching level contour reconstruction method (LCRM), which is a hybridization of fronttracking and level-set methods has been used to track the gas-liquid interface explicitly. Effects of free surface on the interfacial shape and behavior after breakup are studied with different size and depth of the initial bubble. It has been found that the initial diameter of the bubble is the dominant factor controlling the satellite droplet formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct three-dimensional numerical simulation of nucleate boiling using the level contour reconstruction method

The nucleate boiling process is known to be a very efficient mode of heat transfer. It is desirable to operate many engineering applications in this mode since high heat transfer rates and convection coefficients are associated with small values of the excess temperature. Despite its importance, nucleate boiling has not been fully numerically simulated until very recently because of the complex...

متن کامل

Evaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation

In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...

متن کامل

Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model

Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...

متن کامل

Hydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method

Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...

متن کامل

Modeling Three-Dimensional Multiphase FlowUsing a Level Contour Reconstruction Methodfor Front Tracking without Connectivity

Three-dimensional multiphase flow and flow with phase change are simulated using a simplified method of tracking and reconstructing the phase interface. The new level contour reconstruction technique presented here enables front tracking methods to naturally, automatically, and robustly model the merging and breakup of interfaces in three-dimensional flows. The method is designed so that the ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012